From 4a9ca4c4a8f282e04f4bd61293df7753c4fe7ec8 Mon Sep 17 00:00:00 2001 From: Sean Sube Date: Sun, 31 Dec 2023 11:20:51 -0600 Subject: [PATCH] feat(api): add support for DAT upscalers --- api/onnx_web/chain/stages.py | 2 + api/onnx_web/chain/upscale_dat.py | 116 +++ api/onnx_web/convert/__main__.py | 5 +- api/onnx_web/convert/upscaling/dat.py | 70 ++ api/onnx_web/models/dat.py | 1096 +++++++++++++++++++++++++ api/schemas/extras.yaml | 2 + 6 files changed, 1290 insertions(+), 1 deletion(-) create mode 100644 api/onnx_web/chain/upscale_dat.py create mode 100644 api/onnx_web/convert/upscaling/dat.py create mode 100644 api/onnx_web/models/dat.py diff --git a/api/onnx_web/chain/stages.py b/api/onnx_web/chain/stages.py index 0b3e6359..3a15c278 100644 --- a/api/onnx_web/chain/stages.py +++ b/api/onnx_web/chain/stages.py @@ -18,6 +18,7 @@ from .source_s3 import SourceS3Stage from .source_txt2img import SourceTxt2ImgStage from .source_url import SourceURLStage from .upscale_bsrgan import UpscaleBSRGANStage +from .upscale_dat import UpscaleDATStage from .upscale_highres import UpscaleHighresStage from .upscale_outpaint import UpscaleOutpaintStage from .upscale_resrgan import UpscaleRealESRGANStage @@ -47,6 +48,7 @@ CHAIN_STAGES = { "source-txt2img": SourceTxt2ImgStage, "source-url": SourceURLStage, "upscale-bsrgan": UpscaleBSRGANStage, + "upscale-dat": UpscaleDATStage, "upscale-highres": UpscaleHighresStage, "upscale-outpaint": UpscaleOutpaintStage, "upscale-resrgan": UpscaleRealESRGANStage, diff --git a/api/onnx_web/chain/upscale_dat.py b/api/onnx_web/chain/upscale_dat.py new file mode 100644 index 00000000..a2bfcb62 --- /dev/null +++ b/api/onnx_web/chain/upscale_dat.py @@ -0,0 +1,116 @@ +from logging import getLogger +from os import path +from typing import Optional + +import numpy as np +from PIL import Image + +from ..models.onnx import OnnxModel +from ..params import ( + DeviceParams, + ImageParams, + Size, + SizeChart, + StageParams, + UpscaleParams, +) +from ..server import ModelTypes, ServerContext +from ..utils import run_gc +from ..worker import WorkerContext +from .base import BaseStage +from .result import StageResult + +logger = getLogger(__name__) + + +class UpscaleDATStage(BaseStage): + max_tile = SizeChart.micro + + def load( + self, + server: ServerContext, + _stage: StageParams, + upscale: UpscaleParams, + device: DeviceParams, + ): + # must be within the load function for patch to take effect + model_path = path.join(server.model_path, "%s.onnx" % (upscale.upscale_model)) + cache_key = (model_path,) + cache_pipe = server.cache.get(ModelTypes.upscaling, cache_key) + + if cache_pipe is not None: + logger.debug("reusing existing DAT pipeline") + return cache_pipe + + logger.info("loading DAT model from %s", model_path) + + pipe = OnnxModel( + server, + model_path, + provider=device.ort_provider(), + sess_options=device.sess_options(), + ) + + server.cache.set(ModelTypes.upscaling, cache_key, pipe) + run_gc([device]) + + return pipe + + def run( + self, + worker: WorkerContext, + server: ServerContext, + stage: StageParams, + _params: ImageParams, + sources: StageResult, + *, + upscale: UpscaleParams, + stage_source: Optional[Image.Image] = None, + **kwargs, + ) -> StageResult: + upscale = upscale.with_args(**kwargs) + + if upscale.upscale_model is None: + logger.warning("no upscaling model given, skipping") + return sources + + logger.info("upscaling with DAT model: %s", upscale.upscale_model) + device = worker.get_device() + dat = self.load(server, stage, upscale, device) + + outputs = [] + for source in sources.as_numpy(): + image = source / 255.0 + image = image[:, :, [2, 1, 0]].astype(np.float32).transpose((2, 0, 1)) + image = np.expand_dims(image, axis=0) + logger.trace("DAT input shape: %s", image.shape) + + scale = upscale.outscale + logger.trace( + "DAT output shape: %s", + ( + image.shape[0], + image.shape[1], + image.shape[2] * scale, + image.shape[3] * scale, + ), + ) + + output = dat(image) + + output = np.clip(np.squeeze(output, axis=0), 0, 1) + output = output[[2, 1, 0], :, :].transpose((1, 2, 0)) + output = (output * 255.0).round().astype(np.uint8) + + logger.debug("output image shape: %s", output.shape) + outputs.append(output) + + return StageResult(arrays=outputs) + + def steps( + self, + params: ImageParams, + size: Size, + ) -> int: + tile = min(params.unet_tile, self.max_tile) + return size.width // tile * size.height // tile diff --git a/api/onnx_web/convert/__main__.py b/api/onnx_web/convert/__main__.py index b7515b98..efaddbeb 100644 --- a/api/onnx_web/convert/__main__.py +++ b/api/onnx_web/convert/__main__.py @@ -25,6 +25,7 @@ from .diffusion.diffusion_xl import convert_diffusion_diffusers_xl from .diffusion.lora import blend_loras from .diffusion.textual_inversion import blend_textual_inversions from .upscaling.bsrgan import convert_upscaling_bsrgan +from .upscaling.dat import convert_upscaling_dat from .upscaling.resrgan import convert_upscale_resrgan from .upscaling.swinir import convert_upscaling_swinir from .utils import ( @@ -395,7 +396,9 @@ def convert_model_upscaling(conversion: ConversionContext, model): model_type = model.get("model", "resrgan") if model_type == "bsrgan": convert_upscaling_bsrgan(conversion, model, source) - elif model_type == "resrgan": + elif model_type == "dat": + convert_upscaling_dat(conversion, model, source) + elif model_type in ["esrgan", "resrgan"]: convert_upscale_resrgan(conversion, model, source) elif model_type == "swinir": convert_upscaling_swinir(conversion, model, source) diff --git a/api/onnx_web/convert/upscaling/dat.py b/api/onnx_web/convert/upscaling/dat.py new file mode 100644 index 00000000..8259d62d --- /dev/null +++ b/api/onnx_web/convert/upscaling/dat.py @@ -0,0 +1,70 @@ +from logging import getLogger +from os import path + +import torch +from torch.onnx import export + +from ...models.dat import DAT +from ..utils import ConversionContext, ModelDict + +logger = getLogger(__name__) + + +@torch.no_grad() +def convert_upscaling_dat( + conversion: ConversionContext, + model: ModelDict, + source: str, +): + name = model.get("name") + source = source or model.get("source") + scale = model.get("scale", 1) + + dest = path.join(conversion.model_path, name + ".onnx") + logger.info("converting DAT model: %s -> %s", name, dest) + + if path.isfile(dest): + logger.info("ONNX model already exists, skipping") + return + + model = DAT( + # TODO: params + num_in_ch=3, + num_out_ch=3, + num_feat=64, + num_block=23, + num_grow_ch=32, + scale=scale, + ) + + torch_model = torch.load(source, map_location=conversion.map_location) + if "params_ema" in torch_model: + model.load_state_dict(torch_model["params_ema"], strict=False) + elif "params" in torch_model: + model.load_state_dict(torch_model["params"], strict=False) + else: + model.load_state_dict(torch_model, strict=False) + + model.to(conversion.training_device).train(False) + model.eval() + + rng = torch.rand(1, 3, 64, 64, device=conversion.map_location) + input_names = ["input"] + output_names = ["output"] + dynamic_axes = { + "input": {2: "h", 3: "w"}, + "output": {2: "h", 3: "w"}, + } + + logger.info("exporting ONNX model to %s", dest) + export( + model, + rng, + dest, + input_names=input_names, + output_names=output_names, + dynamic_axes=dynamic_axes, + opset_version=conversion.opset, + export_params=True, + ) + logger.info("DAT exported to ONNX successfully") diff --git a/api/onnx_web/models/dat.py b/api/onnx_web/models/dat.py new file mode 100644 index 00000000..bef039bd --- /dev/null +++ b/api/onnx_web/models/dat.py @@ -0,0 +1,1096 @@ +# based on https://github.com/zhengchen1999/DAT/tree/main/basicsr/archs + +import math + +import numpy as np +import torch +import torch.nn as nn +import torch.utils.checkpoint as checkpoint +from timm.models.layers import DropPath, trunc_normal_ +from torch.nn import functional as F + + +def img2windows(img, H_sp, W_sp): + """ + Input: Image (B, C, H, W) + Output: Window Partition (B', N, C) + """ + B, C, H, W = img.shape + img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp) + img_perm = ( + img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C) + ) + return img_perm + + +def windows2img(img_splits_hw, H_sp, W_sp, H, W): + """ + Input: Window Partition (B', N, C) + Output: Image (B, H, W, C) + """ + B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp)) + + img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1) + img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return img + + +class SpatialGate(nn.Module): + """Spatial-Gate. + Args: + dim (int): Half of input channels. + """ + + def __init__(self, dim): + super().__init__() + self.norm = nn.LayerNorm(dim) + self.conv = nn.Conv2d( + dim, dim, kernel_size=3, stride=1, padding=1, groups=dim + ) # DW Conv + + def forward(self, x, H, W): + # Split + x1, x2 = x.chunk(2, dim=-1) + B, N, C = x.shape + x2 = ( + self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C // 2, H, W)) + .flatten(2) + .transpose(-1, -2) + .contiguous() + ) + + return x1 * x2 + + +class SGFN(nn.Module): + """Spatial-Gate Feed-Forward Network. + Args: + in_features (int): Number of input channels. + hidden_features (int | None): Number of hidden channels. Default: None + out_features (int | None): Number of output channels. Default: None + act_layer (nn.Module): Activation layer. Default: nn.GELU + drop (float): Dropout rate. Default: 0.0 + """ + + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + drop=0.0, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.sg = SpatialGate(hidden_features // 2) + self.fc2 = nn.Linear(hidden_features // 2, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x, H, W): + """ + Input: x: (B, H*W, C), H, W + Output: x: (B, H*W, C) + """ + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + + x = self.sg(x, H, W) + x = self.drop(x) + + x = self.fc2(x) + x = self.drop(x) + return x + + +class DynamicPosBias(nn.Module): + # The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py + """Dynamic Relative Position Bias. + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. + residual (bool): If True, use residual strage to connect conv. + """ + + def __init__(self, dim, num_heads, residual): + super().__init__() + self.residual = residual + self.num_heads = num_heads + self.pos_dim = dim // 4 + self.pos_proj = nn.Linear(2, self.pos_dim) + self.pos1 = nn.Sequential( + nn.LayerNorm(self.pos_dim), + nn.ReLU(inplace=True), + nn.Linear(self.pos_dim, self.pos_dim), + ) + self.pos2 = nn.Sequential( + nn.LayerNorm(self.pos_dim), + nn.ReLU(inplace=True), + nn.Linear(self.pos_dim, self.pos_dim), + ) + self.pos3 = nn.Sequential( + nn.LayerNorm(self.pos_dim), + nn.ReLU(inplace=True), + nn.Linear(self.pos_dim, self.num_heads), + ) + + def forward(self, biases): + if self.residual: + pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads + pos = pos + self.pos1(pos) + pos = pos + self.pos2(pos) + pos = self.pos3(pos) + else: + pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases)))) + return pos + + +class Spatial_Attention(nn.Module): + """Spatial Window Self-Attention. + It supports rectangle window (containing square window). + Args: + dim (int): Number of input channels. + idx (int): The indentix of window. (0/1) + split_size (tuple(int)): Height and Width of spatial window. + dim_out (int | None): The dimension of the attention output. Default: None + num_heads (int): Number of attention heads. Default: 6 + attn_drop (float): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float): Dropout ratio of output. Default: 0.0 + qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set + position_bias (bool): The dynamic relative position bias. Default: True + """ + + def __init__( + self, + dim, + idx, + split_size=[8, 8], + dim_out=None, + num_heads=6, + attn_drop=0.0, + proj_drop=0.0, + qk_scale=None, + position_bias=True, + ): + super().__init__() + self.dim = dim + self.dim_out = dim_out or dim + self.split_size = split_size + self.num_heads = num_heads + self.idx = idx + self.position_bias = position_bias + + head_dim = dim // num_heads + self.scale = qk_scale or head_dim**-0.5 + + if idx == 0: + H_sp, W_sp = self.split_size[0], self.split_size[1] + elif idx == 1: + W_sp, H_sp = self.split_size[0], self.split_size[1] + else: + print("ERROR MODE", idx) + exit(0) + self.H_sp = H_sp + self.W_sp = W_sp + + if self.position_bias: + self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False) + # generate mother-set + position_bias_h = torch.arange(1 - self.H_sp, self.H_sp) + position_bias_w = torch.arange(1 - self.W_sp, self.W_sp) + biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w])) + biases = biases.flatten(1).transpose(0, 1).contiguous().float() + self.register_buffer("rpe_biases", biases) + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.H_sp) + coords_w = torch.arange(self.W_sp) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) + coords_flatten = torch.flatten(coords, 1) + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] + relative_coords = relative_coords.permute(1, 2, 0).contiguous() + relative_coords[:, :, 0] += self.H_sp - 1 + relative_coords[:, :, 1] += self.W_sp - 1 + relative_coords[:, :, 0] *= 2 * self.W_sp - 1 + relative_position_index = relative_coords.sum(-1) + self.register_buffer("relative_position_index", relative_position_index) + + self.attn_drop = nn.Dropout(attn_drop) + + def im2win(self, x, H, W): + B, N, C = x.shape + x = x.transpose(-2, -1).contiguous().view(B, C, H, W) + x = img2windows(x, self.H_sp, self.W_sp) + x = ( + x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads) + .permute(0, 2, 1, 3) + .contiguous() + ) + return x + + def forward(self, qkv, H, W, mask=None): + """ + Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size + Output: x (B, H, W, C) + """ + q, k, v = qkv[0], qkv[1], qkv[2] + + B, L, C = q.shape + assert L == H * W, "flatten img_tokens has wrong size" + + # partition the q,k,v, image to window + q = self.im2win(q, H, W) + k = self.im2win(k, H, W) + v = self.im2win(v, H, W) + + q = q * self.scale + attn = q @ k.transpose(-2, -1) # B head N C @ B head C N --> B head N N + + # calculate drpe + if self.position_bias: + pos = self.pos(self.rpe_biases) + # select position bias + relative_position_bias = pos[self.relative_position_index.view(-1)].view( + self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1 + ) + relative_position_bias = relative_position_bias.permute( + 2, 0, 1 + ).contiguous() + attn = attn + relative_position_bias.unsqueeze(0) + + N = attn.shape[3] + + # use mask for shift window + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze( + 0 + ) + attn = attn.view(-1, self.num_heads, N, N) + + attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype) + attn = self.attn_drop(attn) + + x = attn @ v + x = x.transpose(1, 2).reshape( + -1, self.H_sp * self.W_sp, C + ) # B head N N @ B head N C + + # merge the window, window to image + x = windows2img(x, self.H_sp, self.W_sp, H, W) # B H' W' C + + return x + + +class Adaptive_Spatial_Attention(nn.Module): + # The implementation builds on CAT code https://github.com/Zhengchen1999/CAT + """Adaptive Spatial Self-Attention + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. Default: 6 + split_size (tuple(int)): Height and Width of spatial window. + shift_size (tuple(int)): Shift size for spatial window. + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. + drop (float): Dropout rate. Default: 0.0 + attn_drop (float): Attention dropout rate. Default: 0.0 + rg_idx (int): The indentix of Residual Group (RG) + b_idx (int): The indentix of Block in each RG + """ + + def __init__( + self, + dim, + num_heads, + reso=64, + split_size=[8, 8], + shift_size=[1, 2], + qkv_bias=False, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + rg_idx=0, + b_idx=0, + ): + super().__init__() + self.dim = dim + self.num_heads = num_heads + self.split_size = split_size + self.shift_size = shift_size + self.b_idx = b_idx + self.rg_idx = rg_idx + self.patches_resolution = reso + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + + assert ( + 0 <= self.shift_size[0] < self.split_size[0] + ), "shift_size must in 0-split_size0" + assert ( + 0 <= self.shift_size[1] < self.split_size[1] + ), "shift_size must in 0-split_size1" + + self.branch_num = 2 + + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(drop) + + self.attns = nn.ModuleList( + [ + Spatial_Attention( + dim // 2, + idx=i, + split_size=split_size, + num_heads=num_heads // 2, + dim_out=dim // 2, + qk_scale=qk_scale, + attn_drop=attn_drop, + proj_drop=drop, + position_bias=True, + ) + for i in range(self.branch_num) + ] + ) + + if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or ( + self.rg_idx % 2 != 0 and self.b_idx % 4 == 0 + ): + attn_mask = self.calculate_mask( + self.patches_resolution, self.patches_resolution + ) + self.register_buffer("attn_mask_0", attn_mask[0]) + self.register_buffer("attn_mask_1", attn_mask[1]) + else: + attn_mask = None + self.register_buffer("attn_mask_0", None) + self.register_buffer("attn_mask_1", None) + + self.dwconv = nn.Sequential( + nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim), + nn.BatchNorm2d(dim), + nn.GELU(), + ) + self.channel_interaction = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + nn.Conv2d(dim, dim // 8, kernel_size=1), + nn.BatchNorm2d(dim // 8), + nn.GELU(), + nn.Conv2d(dim // 8, dim, kernel_size=1), + ) + self.spatial_interaction = nn.Sequential( + nn.Conv2d(dim, dim // 16, kernel_size=1), + nn.BatchNorm2d(dim // 16), + nn.GELU(), + nn.Conv2d(dim // 16, 1, kernel_size=1), + ) + + def calculate_mask(self, H, W): + # The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py + # calculate attention mask for shift window + img_mask_0 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=0 + img_mask_1 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=1 + h_slices_0 = ( + slice(0, -self.split_size[0]), + slice(-self.split_size[0], -self.shift_size[0]), + slice(-self.shift_size[0], None), + ) + w_slices_0 = ( + slice(0, -self.split_size[1]), + slice(-self.split_size[1], -self.shift_size[1]), + slice(-self.shift_size[1], None), + ) + + h_slices_1 = ( + slice(0, -self.split_size[1]), + slice(-self.split_size[1], -self.shift_size[1]), + slice(-self.shift_size[1], None), + ) + w_slices_1 = ( + slice(0, -self.split_size[0]), + slice(-self.split_size[0], -self.shift_size[0]), + slice(-self.shift_size[0], None), + ) + cnt = 0 + for h in h_slices_0: + for w in w_slices_0: + img_mask_0[:, h, w, :] = cnt + cnt += 1 + cnt = 0 + for h in h_slices_1: + for w in w_slices_1: + img_mask_1[:, h, w, :] = cnt + cnt += 1 + + # calculate mask for window-0 + img_mask_0 = img_mask_0.view( + 1, + H // self.split_size[0], + self.split_size[0], + W // self.split_size[1], + self.split_size[1], + 1, + ) + img_mask_0 = ( + img_mask_0.permute(0, 1, 3, 2, 4, 5) + .contiguous() + .view(-1, self.split_size[0], self.split_size[1], 1) + ) # nW, sw[0], sw[1], 1 + mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1]) + attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2) + attn_mask_0 = attn_mask_0.masked_fill( + attn_mask_0 != 0, float(-100.0) + ).masked_fill(attn_mask_0 == 0, float(0.0)) + + # calculate mask for window-1 + img_mask_1 = img_mask_1.view( + 1, + H // self.split_size[1], + self.split_size[1], + W // self.split_size[0], + self.split_size[0], + 1, + ) + img_mask_1 = ( + img_mask_1.permute(0, 1, 3, 2, 4, 5) + .contiguous() + .view(-1, self.split_size[1], self.split_size[0], 1) + ) # nW, sw[1], sw[0], 1 + mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0]) + attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2) + attn_mask_1 = attn_mask_1.masked_fill( + attn_mask_1 != 0, float(-100.0) + ).masked_fill(attn_mask_1 == 0, float(0.0)) + + return attn_mask_0, attn_mask_1 + + def forward(self, x, H, W): + """ + Input: x: (B, H*W, C), H, W + Output: x: (B, H*W, C) + """ + B, L, C = x.shape + assert L == H * W, "flatten img_tokens has wrong size" + + qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3) # 3, B, HW, C + # V without partition + v = qkv[2].transpose(-2, -1).contiguous().view(B, C, H, W) + + # image padding + max_split_size = max(self.split_size[0], self.split_size[1]) + pad_l = pad_t = 0 + pad_r = (max_split_size - W % max_split_size) % max_split_size + pad_b = (max_split_size - H % max_split_size) % max_split_size + + qkv = qkv.reshape(3 * B, H, W, C).permute(0, 3, 1, 2) # 3B C H W + qkv = ( + F.pad(qkv, (pad_l, pad_r, pad_t, pad_b)) + .reshape(3, B, C, -1) + .transpose(-2, -1) + ) # l r t b + _H = pad_b + H + _W = pad_r + W + _L = _H * _W + + # window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged + # shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ... + if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or ( + self.rg_idx % 2 != 0 and self.b_idx % 4 == 0 + ): + qkv = qkv.view(3, B, _H, _W, C) + qkv_0 = torch.roll( + qkv[:, :, :, :, : C // 2], + shifts=(-self.shift_size[0], -self.shift_size[1]), + dims=(2, 3), + ) + qkv_0 = qkv_0.view(3, B, _L, C // 2) + qkv_1 = torch.roll( + qkv[:, :, :, :, C // 2 :], + shifts=(-self.shift_size[1], -self.shift_size[0]), + dims=(2, 3), + ) + qkv_1 = qkv_1.view(3, B, _L, C // 2) + + if self.patches_resolution != _H or self.patches_resolution != _W: + mask_tmp = self.calculate_mask(_H, _W) + x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device)) + x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device)) + else: + x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0) + x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1) + + x1 = torch.roll( + x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2) + ) + x2 = torch.roll( + x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2) + ) + x1 = x1[:, :H, :W, :].reshape(B, L, C // 2) + x2 = x2[:, :H, :W, :].reshape(B, L, C // 2) + # attention output + attened_x = torch.cat([x1, x2], dim=2) + + else: + x1 = self.attns[0](qkv[:, :, :, : C // 2], _H, _W)[:, :H, :W, :].reshape( + B, L, C // 2 + ) + x2 = self.attns[1](qkv[:, :, :, C // 2 :], _H, _W)[:, :H, :W, :].reshape( + B, L, C // 2 + ) + # attention output + attened_x = torch.cat([x1, x2], dim=2) + + # convolution output + conv_x = self.dwconv(v) + + # Adaptive Interaction Module (AIM) + # C-Map (before sigmoid) + channel_map = ( + self.channel_interaction(conv_x) + .permute(0, 2, 3, 1) + .contiguous() + .view(B, 1, C) + ) + # S-Map (before sigmoid) + attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W) + spatial_map = self.spatial_interaction(attention_reshape) + + # C-I + attened_x = attened_x * torch.sigmoid(channel_map) + # S-I + conv_x = torch.sigmoid(spatial_map) * conv_x + conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C) + + x = attened_x + conv_x + + x = self.proj(x) + x = self.proj_drop(x) + + return x + + +class Adaptive_Channel_Attention(nn.Module): + # The implementation builds on XCiT code https://github.com/facebookresearch/xcit + """Adaptive Channel Self-Attention + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. Default: 6 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. + attn_drop (float): Attention dropout rate. Default: 0.0 + drop_path (float): Stochastic depth rate. Default: 0.0 + """ + + def __init__( + self, + dim, + num_heads=8, + qkv_bias=False, + qk_scale=None, + attn_drop=0.0, + proj_drop=0.0, + ): + super().__init__() + self.num_heads = num_heads + self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + self.dwconv = nn.Sequential( + nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim), + nn.BatchNorm2d(dim), + nn.GELU(), + ) + self.channel_interaction = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + nn.Conv2d(dim, dim // 8, kernel_size=1), + nn.BatchNorm2d(dim // 8), + nn.GELU(), + nn.Conv2d(dim // 8, dim, kernel_size=1), + ) + self.spatial_interaction = nn.Sequential( + nn.Conv2d(dim, dim // 16, kernel_size=1), + nn.BatchNorm2d(dim // 16), + nn.GELU(), + nn.Conv2d(dim // 16, 1, kernel_size=1), + ) + + def forward(self, x, H, W): + """ + Input: x: (B, H*W, C), H, W + Output: x: (B, H*W, C) + """ + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) + qkv = qkv.permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] + + q = q.transpose(-2, -1) + k = k.transpose(-2, -1) + v = v.transpose(-2, -1) + + v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W) + + q = torch.nn.functional.normalize(q, dim=-1) + k = torch.nn.functional.normalize(k, dim=-1) + + attn = (q @ k.transpose(-2, -1)) * self.temperature + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + # attention output + attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C) + + # convolution output + conv_x = self.dwconv(v_) + + # Adaptive Interaction Module (AIM) + # C-Map (before sigmoid) + attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W) + channel_map = self.channel_interaction(attention_reshape) + # S-Map (before sigmoid) + spatial_map = ( + self.spatial_interaction(conv_x) + .permute(0, 2, 3, 1) + .contiguous() + .view(B, N, 1) + ) + + # S-I + attened_x = attened_x * torch.sigmoid(spatial_map) + # C-I + conv_x = conv_x * torch.sigmoid(channel_map) + conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C) + + x = attened_x + conv_x + + x = self.proj(x) + x = self.proj_drop(x) + + return x + + +class DATB(nn.Module): + def __init__( + self, + dim, + num_heads, + reso=64, + split_size=[2, 4], + shift_size=[1, 2], + expansion_factor=4.0, + qkv_bias=False, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + rg_idx=0, + b_idx=0, + ): + super().__init__() + + self.norm1 = norm_layer(dim) + + if b_idx % 2 == 0: + # DSTB + self.attn = Adaptive_Spatial_Attention( + dim, + num_heads=num_heads, + reso=reso, + split_size=split_size, + shift_size=shift_size, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop, + attn_drop=attn_drop, + rg_idx=rg_idx, + b_idx=b_idx, + ) + else: + # DCTB + self.attn = Adaptive_Channel_Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop=attn_drop, + proj_drop=drop, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + ffn_hidden_dim = int(dim * expansion_factor) + self.ffn = SGFN( + in_features=dim, + hidden_features=ffn_hidden_dim, + out_features=dim, + act_layer=act_layer, + ) + self.norm2 = norm_layer(dim) + + def forward(self, x, x_size): + """ + Input: x: (B, H*W, C), x_size: (H, W) + Output: x: (B, H*W, C) + """ + H, W = x_size + x = x + self.drop_path(self.attn(self.norm1(x), H, W)) + x = x + self.drop_path(self.ffn(self.norm2(x), H, W)) + + return x + + +class ResidualGroup(nn.Module): + """ResidualGroup + Args: + dim (int): Number of input channels. + reso (int): Input resolution. + num_heads (int): Number of attention heads. + split_size (tuple(int)): Height and Width of spatial window. + expansion_factor (float): Ratio of ffn hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None + drop (float): Dropout rate. Default: 0 + attn_drop(float): Attention dropout rate. Default: 0 + drop_paths (float | None): Stochastic depth rate. + act_layer (nn.Module): Activation layer. Default: nn.GELU + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm + depth (int): Number of dual aggregation Transformer blocks in residual group. + use_chk (bool): Whether to use checkpointing to save memory. + resi_connection: The convolutional block before residual connection. '1conv'/'3conv' + """ + + def __init__( + self, + dim, + reso, + num_heads, + split_size=[2, 4], + expansion_factor=4.0, + qkv_bias=False, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_paths=None, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + depth=2, + use_chk=False, + resi_connection="1conv", + rg_idx=0, + ): + super().__init__() + self.use_chk = use_chk + self.reso = reso + + self.blocks = nn.ModuleList( + [ + DATB( + dim=dim, + num_heads=num_heads, + reso=reso, + split_size=split_size, + shift_size=[split_size[0] // 2, split_size[1] // 2], + expansion_factor=expansion_factor, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop, + attn_drop=attn_drop, + drop_path=drop_paths[i], + act_layer=act_layer, + norm_layer=norm_layer, + rg_idx=rg_idx, + b_idx=i, + ) + for i in range(depth) + ] + ) + + if resi_connection == "1conv": + self.conv = nn.Conv2d(dim, dim, 3, 1, 1) + elif resi_connection == "3conv": + self.conv = nn.Sequential( + nn.Conv2d(dim, dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim, 3, 1, 1), + ) + + def forward(self, x, x_size): + """ + Input: x: (B, H*W, C), x_size: (H, W) + Output: x: (B, H*W, C) + """ + H, W = x_size + res = x + for blk in self.blocks: + if self.use_chk: + x = checkpoint.checkpoint(blk, x, x_size) + else: + x = blk(x, x_size) + x = torch.einsum("b (h w) c -> b c h w", x) # h=H, w=W) + x = self.conv(x) + x = torch.einsum("b c h w -> b (h w) c", x) + x = res + x + + return x + + +class Upsample(nn.Sequential): + """Upsample module. + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError( + f"scale {scale} is not supported. " "Supported scales: 2^n and 3." + ) + super(Upsample, self).__init__(*m) + + +class UpsampleOneStep(nn.Sequential): + """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) + Used in lightweight SR to save parameters. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + + """ + + def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): + self.num_feat = num_feat + self.input_resolution = input_resolution + m = [] + m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) + m.append(nn.PixelShuffle(scale)) + super(UpsampleOneStep, self).__init__(*m) + + def flops(self): + h, w = self.input_resolution + flops = h * w * self.num_feat * 3 * 9 + return flops + + +class DAT(nn.Module): + """Dual Aggregation Transformer + Args: + img_size (int): Input image size. Default: 64 + in_chans (int): Number of input image channels. Default: 3 + embed_dim (int): Patch embedding dimension. Default: 180 + depths (tuple(int)): Depth of each residual group (number of DATB in each RG). + split_size (tuple(int)): Height and Width of spatial window. + num_heads (tuple(int)): Number of attention heads in different residual groups. + expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + act_layer (nn.Module): Activation layer. Default: nn.GELU + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm + use_chk (bool): Whether to use checkpointing to save memory. + upscale: Upscale factor. 2/3/4 for image SR + img_range: Image range. 1. or 255. + resi_connection: The convolutional block before residual connection. '1conv'/'3conv' + """ + + def __init__( + self, + img_size=64, + in_chans=3, + embed_dim=180, + split_size=[2, 4], + depth=[2, 2, 2, 2], + num_heads=[2, 2, 2, 2], + expansion_factor=4.0, + qkv_bias=True, + qk_scale=None, + drop_rate=0.0, + attn_drop_rate=0.0, + drop_path_rate=0.1, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + use_chk=False, + upscale=2, + img_range=1.0, + resi_connection="1conv", + upsampler="pixelshuffle", + **kwargs, + ): + super().__init__() + + num_in_ch = in_chans + num_out_ch = in_chans + num_feat = 64 + self.img_range = img_range + if in_chans == 3: + rgb_mean = (0.4488, 0.4371, 0.4040) + self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) + else: + self.mean = torch.zeros(1, 1, 1, 1) + self.upscale = upscale + self.upsampler = upsampler + + # ------------------------- 1, Shallow Feature Extraction ------------------------- # + self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) + + # ------------------------- 2, Deep Feature Extraction ------------------------- # + self.num_layers = len(depth) + self.use_chk = use_chk + self.num_features = ( + self.embed_dim + ) = embed_dim # num_features for consistency with other models + heads = num_heads + + self.before_RG = nn.Sequential( + torch.einsum("b c h w -> b (h w) c"), # TODO: will this curry? + nn.LayerNorm(embed_dim), + ) + + curr_dim = embed_dim + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth)) + ] # stochastic depth decay rule + + self.layers = nn.ModuleList() + for i in range(self.num_layers): + layer = ResidualGroup( + dim=embed_dim, + num_heads=heads[i], + reso=img_size, + split_size=split_size, + expansion_factor=expansion_factor, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop_rate, + attn_drop=attn_drop_rate, + drop_paths=dpr[sum(depth[:i]) : sum(depth[: i + 1])], + act_layer=act_layer, + norm_layer=norm_layer, + depth=depth[i], + use_chk=use_chk, + resi_connection=resi_connection, + rg_idx=i, + ) + self.layers.append(layer) + + self.norm = norm_layer(curr_dim) + # build the last conv layer in deep feature extraction + if resi_connection == "1conv": + self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + elif resi_connection == "3conv": + # to save parameters and memory + self.conv_after_body = nn.Sequential( + nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1), + ) + + # ------------------------- 3, Reconstruction ------------------------- # + if self.upsampler == "pixelshuffle": + # for classical SR + self.conv_before_upsample = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + elif self.upsampler == "pixelshuffledirect": + # for lightweight SR (to save parameters) + self.upsample = UpsampleOneStep( + upscale, embed_dim, num_out_ch, (img_size, img_size) + ) + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance( + m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d) + ): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def forward_features(self, x): + _, _, H, W = x.shape + x_size = [H, W] + x = self.before_RG(x) + for layer in self.layers: + x = layer(x, x_size) + x = self.norm(x) + x = torch.einsum("b (h w) c -> b c h w", x) # h=H, w=W) + + return x + + def forward(self, x): + """ + Input: x: (B, C, H, W) + """ + self.mean = self.mean.type_as(x) + x = (x - self.mean) * self.img_range + + if self.upsampler == "pixelshuffle": + # for image SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.conv_last(self.upsample(x)) + elif self.upsampler == "pixelshuffledirect": + # for lightweight SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.upsample(x) + + x = x / self.img_range + self.mean + return x + + +if __name__ == "__main__": + upscale = 1 + height = 64 + width = 64 + model = ( + DAT( + upscale=2, + in_chans=3, + img_size=64, + img_range=1.0, + depth=[6, 6, 6, 6, 6, 6], + embed_dim=180, + num_heads=[6, 6, 6, 6, 6, 6], + expansion_factor=2, + resi_connection="1conv", + split_size=[8, 16], + ) + .cuda() + .eval() + ) + + print(height, width) + + x = torch.randn((1, 3, height, width)).cuda() + x = model(x) + + print(x.shape) diff --git a/api/schemas/extras.yaml b/api/schemas/extras.yaml index f4dfdb3a..a09c0deb 100644 --- a/api/schemas/extras.yaml +++ b/api/schemas/extras.yaml @@ -145,6 +145,8 @@ $defs: type: string enum: [ bsrgan, + dat, + esrgan, resrgan, swinir ]