import inspect import logging from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import PIL import torch from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput from optimum.onnxruntime.modeling_diffusion import ORTStableDiffusionXLPipelineBase from optimum.pipelines.diffusers.pipeline_stable_diffusion_xl_img2img import ( StableDiffusionXLImg2ImgPipelineMixin, ) from optimum.pipelines.diffusers.pipeline_utils import preprocess, rescale_noise_cfg from onnx_web.chain.tile import make_tile_mask from ..utils import parse_regions logger = logging.getLogger(__name__) DEFAULT_WINDOW = 64 DEFAULT_STRIDE = 16 class StableDiffusionXLPanoramaPipelineMixin(StableDiffusionXLImg2ImgPipelineMixin): def __init__( self, *args, window: int = DEFAULT_WINDOW, stride: int = DEFAULT_STRIDE, **kwargs, ): super().__init__(self, *args, **kwargs) self.window = window self.stride = stride def set_window_size(self, window: int, stride: int): self.window = window self.stride = stride def get_views(self, panorama_height, panorama_width, window_size, stride): # Here, we define the mappings F_i (see Eq. 7 in the MultiDiffusion paper https://arxiv.org/abs/2302.08113) panorama_height /= 8 panorama_width /= 8 num_blocks_height = abs((panorama_height - window_size) // stride) + 1 num_blocks_width = abs((panorama_width - window_size) // stride) + 1 total_num_blocks = int(num_blocks_height * num_blocks_width) logger.debug( "panorama generated %s views, %s by %s blocks", total_num_blocks, num_blocks_height, num_blocks_width, ) views = [] for i in range(total_num_blocks): h_start = int((i // num_blocks_width) * stride) h_end = h_start + window_size w_start = int((i % num_blocks_width) * stride) w_end = w_start + window_size views.append((h_start, h_end, w_start, w_end)) return views # Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents_img2img( self, image, timestep, batch_size, num_images_per_prompt, dtype, generator=None ): batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: init_latents = image else: init_latents = self.vae_encoder(sample=image)[ 0 ] * self.vae_decoder.config.get("scaling_factor", 0.18215) if ( batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0 ): # expand init_latents for batch_size additional_image_per_prompt = batch_size // init_latents.shape[0] init_latents = np.concatenate( [init_latents] * additional_image_per_prompt, axis=0 ) elif ( batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0 ): raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = np.concatenate([init_latents], axis=0) # add noise to latents using the timesteps noise = generator.randn(*init_latents.shape).astype(dtype) init_latents = self.scheduler.add_noise( torch.from_numpy(init_latents), torch.from_numpy(noise), torch.from_numpy(timestep), ) return init_latents.numpy() # Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents_text2img( self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None, ): shape = ( batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = generator.randn(*shape).astype(dtype) elif latents.shape != shape: raise ValueError( f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) # scale the initial noise by the standard deviation required by the scheduler latents = latents * np.float64(self.scheduler.init_noise_sigma) return latents # Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] extra_step_kwargs = {} accepts_eta = "eta" in set( inspect.signature(self.scheduler.step).parameters.keys() ) if accepts_eta: extra_step_kwargs["eta"] = eta return extra_step_kwargs # Adapted from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.__call__ def text2img( self, prompt: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: int = 1, eta: float = 0.0, generator: Optional[np.random.RandomState] = None, latents: Optional[np.ndarray] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, pooled_prompt_embeds: Optional[np.ndarray] = None, negative_pooled_prompt_embeds: Optional[np.ndarray] = None, output_type: str = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, original_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Optional[Tuple[int, int]] = None, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`Optional[Union[str, List[str]]]`, defaults to None): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. height (`Optional[int]`, defaults to None): The height in pixels of the generated image. width (`Optional[int]`, defaults to None): The width in pixels of the generated image. num_inference_steps (`int`, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, defaults to 5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`Optional[Union[str, list]]`): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, defaults to 1): The number of images to generate per prompt. eta (`float`, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`Optional[np.random.RandomState]`, defaults to `None`):: A np.random.RandomState to make generation deterministic. latents (`Optional[np.ndarray]`, defaults to `None`): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`Optional[np.ndarray]`, defaults to `None`): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`Optional[np.ndarray]`, defaults to `None`): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a plain tuple. callback (Optional[Callable], defaults to `None`): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. guidance_rescale (`float`, defaults to 0.7): Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. Returns: [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 0. Default height and width to unet height = height or self.unet.config["sample_size"] * self.vae_scale_factor width = width or self.unet.config["sample_size"] * self.vae_scale_factor original_size = original_size or (height, width) target_size = target_size or (height, width) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, 1.0, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 2. Define call parameters if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if generator is None: generator = np.random # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 prompt, regions = parse_regions(prompt) # 3. Encode input prompt ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self._encode_prompt( prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) # 3.b. Encode region prompts region_embeds: List[np.ndarray] = [] add_region_embeds: List[np.ndarray] = [] for _top, _left, _bottom, _right, _weight, _feather, region_prompt in regions: if region_prompt.endswith("+"): region_prompt = region_prompt[:-1] + " " + prompt ( region_prompt_embeds, region_negative_prompt_embeds, region_pooled_prompt_embeds, region_negative_pooled_prompt_embeds, ) = self._encode_prompt( region_prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, ) if do_classifier_free_guidance: region_prompt_embeds = np.concatenate( (region_negative_prompt_embeds, region_prompt_embeds), axis=0 ) add_region_embeds.append( np.concatenate( ( region_negative_pooled_prompt_embeds, region_pooled_prompt_embeds, ), axis=0, ) ) region_embeds.append(region_prompt_embeds) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps) timesteps = self.scheduler.timesteps # 5. Prepare latent variables latents = self.prepare_latents_text2img( batch_size * num_images_per_prompt, self.unet.config.get("in_channels", 4), height, width, prompt_embeds.dtype, generator, latents, ) # 6. Prepare extra step kwargs extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Prepare added time ids & embeddings add_text_embeds = pooled_prompt_embeds add_time_ids = (original_size + crops_coords_top_left + target_size,) add_time_ids = np.array(add_time_ids, dtype=prompt_embeds.dtype) if do_classifier_free_guidance: prompt_embeds = np.concatenate( (negative_prompt_embeds, prompt_embeds), axis=0 ) add_text_embeds = np.concatenate( (negative_pooled_prompt_embeds, add_text_embeds), axis=0 ) add_time_ids = np.concatenate((add_time_ids, add_time_ids), axis=0) add_time_ids = np.repeat( add_time_ids, batch_size * num_images_per_prompt, axis=0 ) # Adapted from diffusers to extend it for other runtimes than ORT timestep_dtype = self.unet.input_dtype.get("timestep", np.float32) # 8. Panorama additions views = self.get_views(height, width, self.window, self.stride) count = np.zeros_like(latents) value = np.zeros_like(latents) # 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order for i, t in enumerate(self.progress_bar(timesteps)): count.fill(0) value.fill(0) for h_start, h_end, w_start, w_end in views: # get the latents corresponding to the current view coordinates latents_for_view = latents[:, :, h_start:h_end, w_start:w_end] # expand the latents if we are doing classifier free guidance latent_model_input = ( np.concatenate([latents_for_view] * 2) if do_classifier_free_guidance else latents_for_view ) latent_model_input = self.scheduler.scale_model_input( torch.from_numpy(latent_model_input), t ) latent_model_input = latent_model_input.cpu().numpy() # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) noise_pred = self.unet( sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, text_embeds=add_text_embeds, time_ids=add_time_ids, ) noise_pred = noise_pred[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) if guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg( noise_pred, noise_pred_text, guidance_rescale=guidance_rescale, ) # compute the previous noisy sample x_t -> x_t-1 scheduler_output = self.scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents_for_view), **extra_step_kwargs, ) latents_view_denoised = scheduler_output.prev_sample.numpy() value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised count[:, :, h_start:h_end, w_start:w_end] += 1 for r in range(len(regions)): top, left, bottom, right, weight, feather, prompt = regions[r] logger.debug( "running region prompt: %s, %s, %s, %s, %s, %s, %s", top, left, bottom, right, weight, feather, prompt, ) # convert coordinates to latent space h_start = top // 8 h_end = bottom // 8 w_start = left // 8 w_end = right // 8 # get the latents corresponding to the current view coordinates latents_for_region = latents[:, :, h_start:h_end, w_start:w_end] logger.trace( "region latent shape: [:,:,%s:%s,%s:%s] -> %s", h_start, h_end, w_start, w_end, latents_for_region.shape, ) # expand the latents if we are doing classifier free guidance latent_region_input = ( np.concatenate([latents_for_region] * 2) if do_classifier_free_guidance else latents_for_region ) latent_region_input = self.scheduler.scale_model_input( torch.from_numpy(latent_region_input), t ) latent_region_input = latent_region_input.cpu().numpy() # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) region_noise_pred = self.unet( sample=latent_region_input, timestep=timestep, encoder_hidden_states=region_embeds[r], text_embeds=add_region_embeds[r], time_ids=add_time_ids, ) region_noise_pred = region_noise_pred[0] # perform guidance if do_classifier_free_guidance: region_noise_pred_uncond, region_noise_pred_text = np.split( region_noise_pred, 2 ) region_noise_pred = region_noise_pred_uncond + guidance_scale * ( region_noise_pred_text - region_noise_pred_uncond ) if guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf region_noise_pred = rescale_noise_cfg( region_noise_pred, region_noise_pred_text, guidance_rescale=guidance_rescale, ) # compute the previous noisy sample x_t -> x_t-1 scheduler_output = self.scheduler.step( torch.from_numpy(region_noise_pred), t, torch.from_numpy(latents_for_region), **extra_step_kwargs, ) latents_region_denoised = scheduler_output.prev_sample.numpy() if feather > 0.0: mask = make_tile_mask( (h_end - h_start, w_end - w_start), (h_end - h_start, w_end - w_start), feather, ) mask = np.expand_dims(mask, axis=0) mask = np.repeat(mask, 4, axis=0) mask = np.expand_dims(mask, axis=0) else: mask = 1 if weight >= 10.0: value[:, :, h_start:h_end, w_start:w_end] = ( latents_region_denoised * mask ) count[:, :, h_start:h_end, w_start:w_end] = mask else: value[:, :, h_start:h_end, w_start:w_end] += ( latents_region_denoised * weight * mask ) count[:, :, h_start:h_end, w_start:w_end] += weight * mask # take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113 latents = np.where(count > 0, value / count, value) # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): if callback is not None and i % callback_steps == 0: callback(i, t, latents) if output_type == "latent": image = latents else: latents = latents / self.vae_decoder.config.get("scaling_factor", 0.18215) # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 image = np.concatenate( [ self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0]) ] ) image = self.watermark.apply_watermark(image) # TODO: add image_processor image = np.clip(image / 2 + 0.5, 0, 1).transpose((0, 2, 3, 1)) if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return StableDiffusionXLPipelineOutput(images=image) # Adapted from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.__call__ def img2img( self, prompt: Optional[Union[str, List[str]]] = None, image: Union[np.ndarray, PIL.Image.Image] = None, strength: float = 0.3, num_inference_steps: int = 50, guidance_scale: float = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: int = 1, eta: float = 0.0, generator: Optional[np.random.RandomState] = None, latents: Optional[np.ndarray] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, pooled_prompt_embeds: Optional[np.ndarray] = None, negative_pooled_prompt_embeds: Optional[np.ndarray] = None, output_type: str = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, original_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Optional[Tuple[int, int]] = None, aesthetic_score: float = 6.0, negative_aesthetic_score: float = 2.5, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`Optional[Union[str, List[str]]]`, defaults to None): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. image (`Union[np.ndarray, PIL.Image.Image]`): `Image`, or tensor representing an image batch which will be upscaled. strength (`float`, defaults to 0.8): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. num_inference_steps (`int`, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, defaults to 5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`Optional[Union[str, list]]`): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, defaults to 1): The number of images to generate per prompt. eta (`float`, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`Optional[np.random.RandomState]`, defaults to `None`):: A np.random.RandomState to make generation deterministic. latents (`Optional[np.ndarray]`, defaults to `None`): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`Optional[np.ndarray]`, defaults to `None`): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`Optional[np.ndarray]`, defaults to `None`): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a plain tuple. callback (Optional[Callable], defaults to `None`): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. guidance_rescale (`float`, defaults to 0.7): Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. Returns: [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 0. Check inputs. Raise error if not correct self.check_inputs( prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 1. Define call parameters if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if generator is None: generator = np.random # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 2. Encode input prompt ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self._encode_prompt( prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) # 3. Preprocess image image = preprocess(image) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps) timesteps, num_inference_steps = self.get_timesteps( num_inference_steps, strength ) latent_timestep = np.repeat( timesteps[:1], batch_size * num_images_per_prompt, axis=0 ) timestep_dtype = self.unet.input_dtype.get("timestep", np.float32) latents_dtype = prompt_embeds.dtype image = image.astype(latents_dtype) # 5. Prepare latent variables latents = self.prepare_latents_img2img( image, latent_timestep, batch_size, num_images_per_prompt, latents_dtype, generator, ) # 6. Prepare extra step kwargs extra_step_kwargs = {} accepts_eta = "eta" in set( inspect.signature(self.scheduler.step).parameters.keys() ) if accepts_eta: extra_step_kwargs["eta"] = eta height, width = latents.shape[-2:] height = height * self.vae_scale_factor width = width * self.vae_scale_factor original_size = original_size or (height, width) target_size = target_size or (height, width) # 8. Prepare added time ids & embeddings add_text_embeds = pooled_prompt_embeds add_time_ids, add_neg_time_ids = self._get_add_time_ids( original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, dtype=prompt_embeds.dtype, ) if do_classifier_free_guidance: prompt_embeds = np.concatenate( (negative_prompt_embeds, prompt_embeds), axis=0 ) add_text_embeds = np.concatenate( (negative_pooled_prompt_embeds, add_text_embeds), axis=0 ) add_time_ids = np.concatenate((add_time_ids, add_time_ids), axis=0) add_time_ids = np.repeat( add_time_ids, batch_size * num_images_per_prompt, axis=0 ) # 8. Panorama additions views = self.get_views(height, width, self.window, self.stride) count = np.zeros_like(latents) value = np.zeros_like(latents) # 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order for i, t in enumerate(self.progress_bar(timesteps)): count.fill(0) value.fill(0) for h_start, h_end, w_start, w_end in views: # get the latents corresponding to the current view coordinates latents_for_view = latents[:, :, h_start:h_end, w_start:w_end] # expand the latents if we are doing classifier free guidance latent_model_input = ( np.concatenate([latents_for_view] * 2) if do_classifier_free_guidance else latents_for_view ) latent_model_input = self.scheduler.scale_model_input( torch.from_numpy(latent_model_input), t ) latent_model_input = latent_model_input.cpu().numpy() # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) noise_pred = self.unet( sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, text_embeds=add_text_embeds, time_ids=add_time_ids, ) noise_pred = noise_pred[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) if guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg( noise_pred, noise_pred_text, guidance_rescale=guidance_rescale, ) # compute the previous noisy sample x_t -> x_t-1 scheduler_output = self.scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents_for_view), **extra_step_kwargs, ) latents_view_denoised = scheduler_output.prev_sample.numpy() value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised count[:, :, h_start:h_end, w_start:w_end] += 1 # take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113 latents = np.where(count > 0, value / count, value) # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): if callback is not None and i % callback_steps == 0: callback(i, t, latents) if output_type == "latent": image = latents else: latents = latents / self.vae_decoder.config.get("scaling_factor", 0.18215) # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 image = np.concatenate( [ self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0]) ] ) image = self.watermark.apply_watermark(image) # TODO: add image_processor image = np.clip(image / 2 + 0.5, 0, 1).transpose((0, 2, 3, 1)) if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return StableDiffusionXLPipelineOutput(images=image) def __call__( self, *args, **kwargs, ): if "image" in kwargs or ( len(args) > 1 and ( isinstance(args[1], np.ndarray) or isinstance(args[1], PIL.Image.Image) ) ): logger.debug("running img2img panorama XL pipeline") return self.img2img(*args, **kwargs) else: logger.debug("running txt2img panorama XL pipeline") return self.text2img(*args, **kwargs) class ORTStableDiffusionXLPanoramaPipeline( ORTStableDiffusionXLPipelineBase, StableDiffusionXLPanoramaPipelineMixin ): def __call__(self, *args, **kwargs): return StableDiffusionXLPanoramaPipelineMixin.__call__(self, *args, **kwargs)