### # This is based on a combination of the ONNX img2img pipeline and the PyTorch upscale pipeline: # https://github.com/huggingface/diffusers/blob/v0.11.1/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py # https://github.com/huggingface/diffusers/blob/v0.11.1/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py # See also: https://github.com/huggingface/diffusers/pull/2158 ### from logging import getLogger from typing import Any, Callable, List, Optional, Union import numpy as np import torch import PIL from diffusers import DDPMScheduler, OnnxRuntimeModel, StableDiffusionUpscalePipeline from diffusers.pipeline_utils import ImagePipelineOutput logger = getLogger(__name__) # TODO: make this dynamic, from self.vae.config.latent_channels num_channels_latents = 4 # TODO: make this dynamic, from self.unet.config.in_channels unet_in_channels = 7 def preprocess(image): if isinstance(image, torch.Tensor): return image elif isinstance(image, PIL.Image.Image): image = [image] if isinstance(image[0], PIL.Image.Image): w, h = image[0].size w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32 image = [np.array(i.resize((w, h)))[None, :] for i in image] image = np.concatenate(image, axis=0) image = np.array(image).astype(np.float32) / 255.0 image = image.transpose(0, 3, 1, 2) image = 2.0 * image - 1.0 image = torch.from_numpy(image) elif isinstance(image[0], torch.Tensor): image = torch.cat(image, dim=0) return image class OnnxStableDiffusionUpscalePipeline(StableDiffusionUpscalePipeline): def __init__( self, vae: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: Any, unet: OnnxRuntimeModel, low_res_scheduler: DDPMScheduler, scheduler: Any, max_noise_level: int = 350, ): super().__init__(vae, text_encoder, tokenizer, unet, low_res_scheduler, scheduler, max_noise_level) def __call__( self, prompt: Union[str, List[str]], image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]], num_inference_steps: int = 75, guidance_scale: float = 9.0, noise_level: int = 20, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, ): # 1. Check inputs self.check_inputs(prompt, image, noise_level, callback_steps) # 2. Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_embeddings = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) text_embeddings_dtype = torch.float32 # TODO: convert text_embeddings.dtype to torch dtype # 4. Preprocess image image = preprocess(image) image = image.cpu() # 5. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Add noise to image noise_level = torch.tensor([noise_level], dtype=torch.long, device=device) noise = torch.randn(image.shape, generator=generator, device=device, dtype=text_embeddings_dtype) image = self.low_res_scheduler.add_noise(image, noise, noise_level) batch_multiplier = 2 if do_classifier_free_guidance else 1 image = np.concatenate([image] * batch_multiplier * num_images_per_prompt) noise_level = np.concatenate([noise_level] * image.shape[0]) # 6. Prepare latent variables height, width = image.shape[2:] latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, text_embeddings_dtype, device, generator, latents, ) # 7. Check that sizes of image and latents match num_channels_image = image.shape[1] if num_channels_latents + num_channels_image != unet_in_channels: raise ValueError( "Incorrect configuration settings! The config of `pipeline.unet` expects" f" {unet_in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_image`: {num_channels_image} " f" = {num_channels_latents+num_channels_image}. Please verify the config of" " `pipeline.unet` or your `image` input." ) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents # concat latents, mask, masked_image_latents in the channel dimension latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) latent_model_input = np.concatenate([latent_model_input, image], axis=1) # timestep to tensor timestep = np.array([t], dtype=np.float32) # predict the noise residual noise_pred = self.unet( sample=latent_model_input, timestep=timestep, encoder_hidden_states=text_embeddings, class_labels=noise_level, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) # 10. Post-processing image = self.decode_latents(latents.float()) # 11. Convert to PIL if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image) def decode_latents(self, latents): latents = 1 / 0.08333 * latents image = self.vae(latent_sample=latents)[0] image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1)) return image def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): batch_size = len(prompt) if isinstance(prompt, list) else 1 text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) # if hasattr(text_inputs, "attention_mask"): # attention_mask = text_inputs.attention_mask.to(device) # else: # attention_mask = None # no positional arguments to text_encoder text_embeddings = self.text_encoder( input_ids=text_input_ids.int().to(device), # attention_mask=attention_mask, ) text_embeddings = text_embeddings[0] bs_embed, seq_len, _ = text_embeddings.shape # duplicate text embeddings for each generation per prompt, using mps friendly method text_embeddings = text_embeddings.repeat(1, num_images_per_prompt) text_embeddings = text_embeddings.reshape(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) # if hasattr(uncond_input, "attention_mask"): # attention_mask = uncond_input.attention_mask.to(device) # else: # attention_mask = None uncond_embeddings = self.text_encoder( input_ids=uncond_input.input_ids.int().to(device), # attention_mask=attention_mask, ) uncond_embeddings = uncond_embeddings[0] seq_len = uncond_embeddings.shape[1] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt) uncond_embeddings = uncond_embeddings.reshape(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) return text_embeddings