1
0
Fork 0
onnx-web/api/onnx_web/diffusion/pipeline_onnx_stable_diffus...

297 lines
12 KiB
Python

###
# This is based on a combination of the ONNX img2img pipeline and the PyTorch upscale pipeline:
# https://github.com/huggingface/diffusers/blob/v0.11.1/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
# https://github.com/huggingface/diffusers/blob/v0.11.1/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py
# See also: https://github.com/huggingface/diffusers/pull/2158
###
from logging import getLogger
from typing import Any, Callable, List, Optional, Union
import numpy as np
import torch
import PIL
from diffusers import DDPMScheduler, OnnxRuntimeModel, StableDiffusionUpscalePipeline
from diffusers.pipeline_utils import ImagePipelineOutput
logger = getLogger(__name__)
NUM_LATENT_CHANNELS = 4
NUM_UNET_INPUT_CHANNELS = 7
TORCH_DTYPES = {
"float16": torch.float16,
"float32": torch.float32,
}
def preprocess(image):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
w, h = image[0].size
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32
image = [np.array(i.resize((w, h)))[None, :] for i in image]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
class OnnxStableDiffusionUpscalePipeline(StableDiffusionUpscalePipeline):
def __init__(
self,
vae: OnnxRuntimeModel,
text_encoder: OnnxRuntimeModel,
tokenizer: Any,
unet: OnnxRuntimeModel,
low_res_scheduler: DDPMScheduler,
scheduler: Any,
max_noise_level: int = 350,
):
super().__init__(vae, text_encoder, tokenizer, unet, low_res_scheduler, scheduler, max_noise_level)
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]],
num_inference_steps: int = 75,
guidance_scale: float = 9.0,
noise_level: int = 20,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
):
# 1. Check inputs
self.check_inputs(prompt, image, noise_level, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_embeddings = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
latents_dtype = TORCH_DTYPES[str(text_embeddings.dtype)]
# 4. Preprocess image
image = preprocess(image)
image = image.cpu()
# 5. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Add noise to image
noise_level = torch.tensor([noise_level], dtype=torch.long, device=device)
noise = torch.randn(image.shape, generator=generator, device=device, dtype=latents_dtype)
image = self.low_res_scheduler.add_noise(image, noise, noise_level)
batch_multiplier = 2 if do_classifier_free_guidance else 1
image = np.concatenate([image] * batch_multiplier * num_images_per_prompt)
noise_level = np.concatenate([noise_level] * image.shape[0])
# 6. Prepare latent variables
height, width = image.shape[2:]
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
NUM_LATENT_CHANNELS,
height,
width,
latents_dtype,
device,
generator,
latents,
)
# 7. Check that sizes of image and latents match
num_channels_image = image.shape[1]
if NUM_LATENT_CHANNELS + num_channels_image != NUM_UNET_INPUT_CHANNELS:
raise ValueError(
"Incorrect configuration settings! The config of `pipeline.unet` expects"
f" {NUM_UNET_INPUT_CHANNELS} but received `num_channels_latents`: {NUM_LATENT_CHANNELS} +"
f" `num_channels_image`: {num_channels_image} "
f" = {NUM_LATENT_CHANNELS+num_channels_image}. Please verify the config of"
" `pipeline.unet` or your `image` input."
)
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
timestep_dtype = next(
(input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
)
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
# concat latents, mask, masked_image_latents in the channel dimension
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
latent_model_input = np.concatenate([latent_model_input, image], axis=1)
# timestep to tensor
timestep = np.array([t], dtype=timestep_dtype)
# predict the noise residual
noise_pred = self.unet(
sample=latent_model_input,
timestep=timestep,
encoder_hidden_states=text_embeddings,
class_labels=noise_level.astype(np.int64),
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
torch.from_numpy(noise_pred), t, latents, **extra_step_kwargs
).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 10. Post-processing
image = self.decode_latents(latents.float())
# 11. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
def decode_latents(self, latents):
latents = 1 / 0.08333 * latents
image = self.vae(latent_sample=latents)[0]
image = np.clip(image / 2 + 0.5, 0, 1)
image = image.transpose((0, 2, 3, 1))
return image
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
# if hasattr(text_inputs, "attention_mask"):
# attention_mask = text_inputs.attention_mask.to(device)
# else:
# attention_mask = None
# no positional arguments to text_encoder
text_embeddings = self.text_encoder(
input_ids=text_input_ids.int().to(device),
# attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
bs_embed, seq_len, _ = text_embeddings.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt)
text_embeddings = text_embeddings.reshape(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
# if hasattr(uncond_input, "attention_mask"):
# attention_mask = uncond_input.attention_mask.to(device)
# else:
# attention_mask = None
uncond_embeddings = self.text_encoder(
input_ids=uncond_input.input_ids.int().to(device),
# attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
seq_len = uncond_embeddings.shape[1]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt)
uncond_embeddings = uncond_embeddings.reshape(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
return text_embeddings